Fuzzy and neuro-fuzzy modeling of a fermentation process

نویسندگان

  • Chabbi Charef
  • Mahmoud Taibi
  • Nicole Vincent
  • Khier Benmahammed
چکیده

Neuro-fuzzy modeling may be qualified as a grey-box technique, since it combines the transparency of rule-based fuzzy systems with the learning capability of neural networks. The main problem in the identification of non-linear processes is the lack of complete information. Certain variables are, either immeasurable or difficult to measure, the soft sensors are the necessary tools to solve the problem. Those latter can be used via online estimation, and then they will be implemented in fedbatch fermentation processes for optimal production and online monitoring. The process parameters are estimated through a fuzzy logic system. The fuzzy models of takagi-sugeno type suffer of the problem of poor initialization, which can be solved by the trial-and error method Trial-and-error method is used to solve the poor initialization problem of TS models, this deals with identifying the structure of the model, such structure consists on finding the optimum number of rules, which enters in the model cost reduction. The fuzzy model might not capture the process non-linearity, especially if the number of rules is overoptimized. Bioreactors exhibit a wide range of dynamic behaviours and offer many challenges to modeling, as a result of the presence of living micro-organisms whose growth rate is described by complex equations. We will illustrate the fuzzy and the neuro-fuzzy modeling on the identification of such a system. In order to compare the NF model outputs, we use another fuzzy model that does not incorporate the neural network learning capability, to identify the parameters of the same process. Even though, the two models were trained using levenberg-marquardt algorithm, the corresponding simulation results show that a better modeling is achieved using NF technique, especially that we did not employ any involved optimization procedure to identify the NF structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance

A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for design...

متن کامل

Neuro-fuzzy based model of batch fermentation of Kluyveromyces marxianus var. lactis MC5

In this work a neuro-fuzzy based model of a whey batch fermentation process by a strain Kluyveromyces marxianus var. lactis MC5 is presented. A three-layered neuro-fuzzy network is realized. The simulation results are compared with conventional models (based on mass balance and differential equations). The neuro-fuzzy model provides a better fitness and allows inclusion of linguistic variables ...

متن کامل

Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing

Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Fermentation Process Modeling Using Takagi-Sugeno Fuzzy Model

Fermentation process is vital and important in many biotechnological applications. However modeling the fermentation process is considered a challenging and complex problem. The complexity of the problem is driven by the need of efficient, accurate, not expensive, and reliable predictive models. In this paper, we apply a Takagi-Sugeno Fuzzy Logic technique for modeling the lipase activity produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009